ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Опишите все системы счисления, в которых число делится на 2 тогда и только тогда, когда сумма его цифр делится на 2. б) Решите задачу, заменив модуль 2 произвольным натуральным числом m > 1. ![]() |
Страница: 1 2 3 4 >> [Всего задач: 20]
n = akqk + ak - 1qk - 1 +...+ a1q + a0,
где
0
n = a1 . 1! + a2 . 2! + a3 . 3! +...,
где
0
A = a0 + 2a1 + 22a2 +...+ 2nan,
где каждое из чисел ak = 0,
1 или -1 и
akak + 1 = 0 для всех
0
а) Опишите все системы счисления, в которых число делится на 2 тогда и только тогда, когда сумма его цифр делится на 2. б) Решите задачу, заменив модуль 2 произвольным натуральным числом m > 1.
Найдите наименьшее основание системы счисления, в которой одновременно имеют место следующие признаки делимости:
Страница: 1 2 3 4 >> [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |