ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Дроби
>>
Десятичные дроби
>>
Периодические и непериодические дроби
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Обозначим через L(m) длину периода дроби
1/m. Докажите, что если (m1, 10) = 1 и (m2, 10) = 1, то справедливо равенство L(m1m2) = [L(m1), L(m2)]. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Найдите последние три цифры периодов дробей 1/107, 1/131, 1/151. (Это можно сделать, не считая предыдущих цифр.)
Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?
При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа A + B?
Пусть (m, n) = 1. Докажите, что сумма длин периода и предпериода десятичного представления дроби m/n не превосходит φ(n).
Обозначим через L(m) длину периода дроби
1/m. Докажите, что если (m1, 10) = 1 и (m2, 10) = 1, то справедливо равенство L(m1m2) = [L(m1), L(m2)].
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|