ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Обозначим через  L(m)  длину периода дроби   1/m. Докажите, что если  (m1, 10) = 1  и  (m2, 10) = 1,  то справедливо равенство  L(m1m2) = [L(m1), L(m2)].
Чему равна длина периода дроби  1/m1 + 1/m2?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 60893

Темы:   [ Периодические и непериодические дроби ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11

Найдите последние три цифры периодов дробей 1/107, 1/131, 1/151. (Это можно сделать, не считая предыдущих цифр.)

Прислать комментарий     Решение

Задача 107631

Темы:   [ Периодические и непериодические дроби ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9,10

Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

Прислать комментарий     Решение

Задача 107989

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  A + B?

Прислать комментарий     Решение

Задача 60887

Темы:   [ Периодические и непериодические дроби ]
[ Функция Эйлера ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 10,11

Пусть  (m, n) = 1.  Докажите, что сумма длин периода и предпериода десятичного представления дроби  m/n  не превосходит φ(n).

Прислать комментарий     Решение

Задача 60888

Темы:   [ Периодические и непериодические дроби ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 10,11

Обозначим через  L(m)  длину периода дроби   1/m. Докажите, что если  (m1, 10) = 1  и  (m2, 10) = 1,  то справедливо равенство  L(m1m2) = [L(m1), L(m2)].
Чему равна длина периода дроби  1/m1 + 1/m2?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .