ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть  f(x) = (x – a)(x – b)(x – c)  – многочлен третьей степени с комплексными корнями a, b, c.
Докажите, что корни производной этого многочлена лежат внутри треугольника с вершинами в точках a, b, c.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 92]      



Задача 64613

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Средние величины ]
[ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Многочлен степени  n > 1  имеет n разных корней х1, х2, ..., хn. Его производная имеет корни y1, y2, ..., yn–1.
Докажите неравенство  

Прислать комментарий     Решение

Задача 65480

Темы:   [ Тригонометрические уравнения ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 4-
Классы: 10,11

Решите уравнение  2 sin πx/2 – 2 cos πx = x5 + 10x – 54.

Прислать комментарий     Решение

Задача 35154

Темы:   [ Свойства коэффициентов многочлена ]
[ Вычисление производной ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что при умножении многочлена  (x + 1)n–1  на любой многочлен, отличный от нуля, получается многочлен, имеющий не менее n отличных от нуля коэффициентов.

Прислать комментарий     Решение

Задача 61135

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Производная (прочее) ]
[ Геометрия комплексной плоскости ]
Сложность: 4
Классы: 10,11

Пусть  f(x) = (x – a)(x – b)(x – c)  – многочлен третьей степени с комплексными корнями a, b, c.
Докажите, что корни производной этого многочлена лежат внутри треугольника с вершинами в точках a, b, c.

Прислать комментарий     Решение

Задача 61136

 [Теорема Гаусса-Люка]
Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Производная (прочее) ]
[ Геометрия комплексной плоскости ]
Сложность: 4
Классы: 10,11

Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .