Страница: 1
2 3 4 5 6 7 >> [Всего задач: 31]
[Прямая Симсона]
|
|
Сложность: 4- Классы: 10,11
|
Пусть u – точка на единичной окружности z = 1 и u1, u2, u3 – основания перпендикуляров, опущенных из u на стороны a2a3, a1a3, a1a2 вписанного в эту окружностьтреугольника a1a2a3.
а) Докажите, что числа u1, u2, u3 вычисляются по формулам
б) Докажите, что точки u1, u2, u3 лежат на одной прямой.
|
|
Сложность: 4+ Классы: 10,11
|
В треугольнике $ABC$ $O$ – центр описанной окружности, $H$ – ортоцентр, $M$ – середина $AB$. Прямая $MH$ пересекает прямую, проходящую через $O$ и параллельную $AB$, в точке $K$, лежащей на описанной окружности треугольника. Точка $P$ – проекция $K$ на $AC$. Докажите, что $PH\parallel BC$.
|
|
Сложность: 5- Классы: 8,9,10
|
Докажите, что основания перпендикуляров, опущенных из
произвольной точки описанной окружности на стороны треугольника
(или их продолжения), лежат на одной прямой (прямая Симсона.)
|
|
Сложность: 5 Классы: 8,9,10
|
Точки
A,
B и
C лежат на одной прямой, точка
P — вне этой прямой. Докажите, что центры описанных окружностей
треугольников
ABP,
BCP,
ACP и точка
P лежат на одной окружности.
В треугольнике
ABC проведена биссектриса
AD
и из точки
D опущены перпендикуляры
DB' и
DC' на прямые
AC
и
AB; точка
M лежит на прямой
B'C', причем
DM BC.
Докажите, что точка
M лежит на медиане
AA1.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 31]