ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что (a² + b² + c² – ab – bc – ac)(x² + y² + z² – xy – yz – xz) = X² + Y² + Z² – XY – YZ – XZ, если X = ax + cy + bz, Y = cx + by + az, Z = bx + ay + cz. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 413]
Числа a, b и c отличны от нуля и выполняются равенства: a + b/c = b + c/a = c + a/b = 1. Докажите, что ab + bc + ca = 0.
Существуют ли такие целые числа x, y и z, для которых выполняется равенство: (x – y)³ + (y – z)³ + (z – x)³ = 2011?
Значение многочлена Pn(x) = anxn + an–1xn–1 + ... + a1x + a0 (an ≠ 0) в точке x = c можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде Pn(x) = (...(anx + an–1)x + ... + a1)x + a0. Пусть bn, bn–1, ..., b0 – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть bn = an, bk = cbk+1 + ak (k = n – 1, ..., 0). Докажите, что при делении многочлена Pn(x) на x – c с остатком, у многочлена в частном коэффициенты будут совпадать с числами bn–1, ..., b1, а остатком будет число b0. Таким образом, будет справедливо равенство:
Докажите, что (a² + b² + c² – ab – bc – ac)(x² + y² + z² – xy – yz – xz) = X² + Y² + Z² – XY – YZ – XZ, если X = ax + cy + bz, Y = cx + by + az, Z = bx + ay + cz.
Известно, что a² + b = b² + c = c² + a. Какие значения может принимать выражение a(a² – b²) + b(b² – c²) + c(c² – a²)?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 413] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|