ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:
| xn + 1 - xn| | x1 - x0| . qn, | x* - xn| | x1 - x0| . .
Решение |
Страница: 1 [Всего задач: 3]
Для заданных натуральных чисел
k0<k1<k2 выясните,
какое наименьшее число корней на промежутке sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0 где A1, A2 – вещественные числа.
| xn + 1 - xn| | x1 - x0| . qn, | x* - xn| | x1 - x0| . .
Положительные числа х1, ..., хk удовлетворяют неравенствам
Страница: 1 [Всего задач: 3] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|