ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите справедливость оценок:

  а)  

  б)  

  в)  

  г)  

   Решение

Задачи

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 590]      



Задача 61398

Темы:   [ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 9,10,11

Докажите справедливость оценок:

  а)  

  б)  

  в)  

  г)  

Прислать комментарий     Решение

Задача 64963

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 10,11

При каких значениях x и y верно равенство  x² + (1 – y)² + (x – y)² = ⅓?

Прислать комментарий     Решение

Задача 65266

Темы:   [ Дискретное распределение ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

На каждой из четырёх карточек написано натуральное число. Берут наугад две карточки и складывают числа на них. С равной вероятностью эта сумма может быть меньше 9, равна 9 и больше 9. Какие числа могут быть записаны на карточках?

Прислать комментарий     Решение

Задача 65285

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?

Прислать комментарий     Решение

Задача 65294

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ Неравенство Коши ]
[ Средние величины ]
Сложность: 3+
Классы: 9,10,11

В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.

Прислать комментарий     Решение

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .