Страница:
<< 87 88 89 90
91 92 93 >> [Всего задач: 590]
|
|
Сложность: 3+ Классы: 6,7,8
|
a) Решить в целых числах уравнение
1/
a +
1/
b +
1/
c = 1.
б)
1/
a +
1/
b +
1/
c < 1 (
a, b, c – натуральные числа). Доказать, что
1/
a +
1/
b +
1/
c <
41/
42.
На плоскости имеется 1983 точки и окружность единичного радиуса.
Доказать, что на окружности найдётся точка, сумма расстояний от которой до данных точек не меньше 1983.
Найти все числа, которые в 12 раз больше суммы своих цифр.
|
|
Сложность: 3+ Классы: 8,9,10
|
Доказать неравенство
.
Доказать, что
а) из всех треугольников с данной стороной и данным периметром наибольшую площадь имеет равнобедренный треугольник (у которого данная сторона является основанием);
б) из всех треугольников с данной стороной и данной площадью наименьший периметр имеет равнобедренный треугольник (у которого данная сторона является основанием).
Страница:
<< 87 88 89 90
91 92 93 >> [Всего задач: 590]