ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 590]      



Задача 31296

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

a) Решить в целых числах уравнение   1/a + 1/b + 1/c = 1.
б)   1/a + 1/b + 1/c < 1  (a, b, c – натуральные числа). Доказать, что   1/a + 1/b + 1/c < 41/42.

Прислать комментарий     Решение

Задача 32032

Темы:   [ Неравенство треугольника (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9

На плоскости имеется 1983 точки и окружность единичного радиуса.
Доказать, что на окружности найдётся точка, сумма расстояний от которой до данных точек не меньше 1983.

Прислать комментарий     Решение

Задача 32078

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

Найти все числа, которые в 12 раз больше суммы своих цифр.

Прислать комментарий     Решение

Задача 32100

Темы:   [ Неравенство Коши ]
[ Классические неравенства (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9,10

Доказать неравенство   .

Прислать комментарий     Решение

Задача 32883

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Формула Герона ]
[ Неравенство Коши ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Доказать, что
  а) из всех треугольников с данной стороной и данным периметром наибольшую площадь имеет равнобедренный треугольник (у которого данная сторона является основанием);
  б) из всех треугольников с данной стороной и данной площадью наименьший периметр имеет равнобедренный треугольник (у которого данная сторона является основанием).

Прислать комментарий     Решение

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .