ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каким линейным рекуррентным соотношениям удовлетворяют последовательности

a) an = n2;        б) an = n3?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 61467

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 3+
Классы: 9,10,11

Докажите, что произвольная последовательность Qn, заданная условиями

Q0 = $\displaystyle \alpha$,    Q1 = $\displaystyle \beta$,    Qn + 2 = Qn + 1 + Qn    (n $\displaystyle \geqslant$ 0),

может быть выражена через числа Фибоначчи Fn и числа Люка Ln (определение чисел Люка смотри в задаче 3.133).

Прислать комментарий     Решение

Задача 61483

Темы:   [ Линейные рекуррентные соотношения ]
[ Тригонометрия (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть характеристическое уравнение (11.3 ) последовательности (11.2) имеет комплексные корни x1, 2 = a±ib = re±i$\scriptstyle \varphi$. Докажите, что для некоторой пары чисел c1, c2 будет выполняться равенство

an = rn(c1cos n$\displaystyle \varphi$ + c2sin n$\displaystyle \varphi$).


Прислать комментарий     Решение

Задача 61485

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Каким линейным рекуррентным соотношениям удовлетворяют последовательности

a) an = n2;        б) an = n3?

Прислать комментарий     Решение

Задача 61462

Тема:   [ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Найдите формулу n-го члена для последовательностей, заданных условиями ( n $ \geqslant$ 0):

a) a0 = 0, a1 = 1, an + 2 = 5an + 1 - 6an;
б) a0 = 1, a1 = 1, an + 2 = 3an + 1 - 2an;
в) a0 = 1, a1 = 1, an + 2 = an + 1 + an;
г) a0 = 1, a1 = 2, an + 2 = 2an + 1 - an;
д) a0 = 0, a1 = 1, an + 2 = 2an + 1 + an.

Прислать комментарий     Решение

Задача 61463

Темы:   [ Линейные рекуррентные соотношения ]
[ Квадратные корни (прочее) ]
[ Цепные (непрерывные) дроби ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 10,11

При возведении числа  1 + в различные степени, можно обнаружить некоторые закономерности:
  (1 + )1 = 1 + = + ,   (1 + )2 = 3 + 2 = + ,   (1 + )3 = 7 + 5 = + ,   (1 + )4 = 17 + 12 = + .
Для их изучения определим числа an и bn при помощи равенства  (1 + )n = an + bn,  (n ≥ 0).
  а) Выразите через an и bn число  (1 – )n.
  б) Докажите равенство  
  в) Каким рекуррентным уравнениям удовлетворяют последовательности {an} и {bn}?
  г) Пользуясь пунктом а), найдите формулы n-го члена для последовательностей {an} и {bn}.
  д) Найдите связь между числами an, bn и подходящими дробями к числу .

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .