ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Квадратная таблица размером n×n заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать n положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке. ![]() ![]() Известно, что f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение f(g(h(x))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8? ![]() ![]() ![]() Из километров — в мили. В задаче 3.125 была введена фибоначчиева система счисления. Она оказывается удобной, когда нужно сделать перевод расстояния из километров в мили или наоборот. Предположим, что мы хотим узнать, сколько миль в 30 километрах. Для этого представляем число 30 в фибоначчиевой системе счисления:
30 = 21 + 8 + 1 = F8 + F6 + F2 = (1010001)F.
Теперь нужно
сдвинуть каждое число на одну позицию вправо, получая
F7 + F5 + F1 = 13 + 5 + 1 = 19 = (101001)F.
Поэтому предполагаемый
результат — 19 миль. (Правильный ответ — около 18.46
миль.) Аналогично делается перевод из миль в километры.
Объясните, почему работает такой алгоритм. Проверьте, что он дает округленное число миль в n километрах при всех n ![]() ![]() |
Страница: << 1 2 3 4 >> [Всего задач: 20]
Предположим, что мы хотим узнать, сколько миль в 30 километрах. Для этого представляем число 30 в фибоначчиевой системе счисления:
30 = 21 + 8 + 1 = F8 + F6 + F2 = (1010001)F.
Теперь нужно
сдвинуть каждое число на одну позицию вправо, получая
F7 + F5 + F1 = 13 + 5 + 1 = 19 = (101001)F.
Поэтому предполагаемый
результат — 19 миль. (Правильный ответ — около 18.46
миль.) Аналогично делается перевод из миль в километры.
Объясните, почему работает такой алгоритм. Проверьте, что он дает округленное число миль в n километрах при всех n
Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?
Покажите, что любое натуральное число n может быть представлено в виде
Имеются два симметричных кубика. Можно ли так написать на их гранях некоторые числа, чтобы сумма очков при бросании принимала значения 1, 2, ..., 36 с равными вероятностями?
Страница: << 1 2 3 4 >> [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |