Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 2393]
|
|
Сложность: 4- Классы: 10,11
|
В треугольной пирамиде периметры всех её граней равны. Найти
площадь полной поверхности этой пирамиды, если площадь одной её
грани равна
S .
|
|
Сложность: 4- Классы: 10,11
|
Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие
боковой поверхности конуса, попарно перпендикулярные друг другу.
|
|
Сложность: 4- Классы: 10,11
|
Укажите точки на поверхности куба, из которых диагональ куба
видна под наименьшим углом.
|
|
Сложность: 4- Классы: 10,11
|
В пространстве даны n точек общего положения (никакие три не лежат на одной прямой, никакие четыре – в одной плоскости). Через каждые три из них проведена плоскость. Докажите, что какие бы n – 3 точки в пространстве ни взять, найдётся плоскость из проведённых, не содержащая ни одной из этих n – 3 точек.
[Неравенство Птолемея]
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство AB·CD + AC·BD > AD·BC.
Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 2393]