ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Космический аппарат сел на неподвижный астероид, про который известно только, что он представляет собой шар или куб. Аппарат проехал по поверхности астероида в точку, симметричную начальной относительно центра астероида. Всё это время он непрерывно передавал свои пространственные координаты на космическую станцию, и там точно определили трёхмерную траекторию аппарата. Может ли этого оказаться недостаточно, чтобы отличить, по кубу или по шару ездил аппарат?

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 204]      



Задача 104101

Темы:   [ Площадь и ортогональная проекция ]
[ Куб ]
[ Свойства сечений ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 10,11

В кубе АВСDА1В1С1D1 площадь ортогональной проекции грани АА1В1В на плоскость, перпендикулярную диагонали АС1, равна 1.
Найдите площадь ортогональной проекции куба на эту плоскость.

Прислать комментарий     Решение

Задача 107636

Темы:   [ Формула включения-исключения ]
[ Куб ]
[ Подсчет двумя способами ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через A) записана единица. Через кубик A проходит три слоя, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях.

Прислать комментарий     Решение

Задача 110143

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
[ Модуль числа (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Прислать комментарий     Решение


Задача 107702

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Куб ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3+
Классы: 8,9,10,11

Поверхность кубика Рубика 3 x 3 x 3 состоит из 54 клеток. Какое наибольшее количество клеток можно отметить так, чтобы отмеченные клетки не имели общих вершин?
Прислать комментарий     Решение


Задача 64447

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Сфера, касающаяся ребер угла ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Космический аппарат сел на неподвижный астероид, про который известно только, что он представляет собой шар или куб. Аппарат проехал по поверхности астероида в точку, симметричную начальной относительно центра астероида. Всё это время он непрерывно передавал свои пространственные координаты на космическую станцию, и там точно определили трёхмерную траекторию аппарата. Может ли этого оказаться недостаточно, чтобы отличить, по кубу или по шару ездил аппарат?

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .