Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 233]
|
|
Сложность: 4- Классы: 9,10,11
|
Найдите формулу
n-го члена для
последовательностей, заданных условиями (
n 0):
a) a0 = 0, a1 = 1, an + 2 = 4an + 1 - 5an; |
б) a0 = 1, a1 = 2, an + 2 = 2an + 1 - 2an; |
в) a0 = 1, a1 = 2, an + 2 + an + 1 + an = 0; |
г) a0 = 1, a1 = 8, an + 2 = 6an + 1 + 25an. |
|
|
Сложность: 4- Классы: 8,9,10
|
Для каждого натурального числа n обозначим через O(n) его наибольший нечётный делитель. Даны произвольные натуральные числа
х1 = а и х2 = b. Построим бесконечную последовательность натуральных чисел по правилу: xn = O(хn–1 + хn–2), где n = 3, 4, ... .
а) Докажите, что, начиная с некоторого места, все числа в последовательности будут равны одному и тому же числу.
б) Как найти это число, зная числа a и b?
Пусть x0 = 109,
xn = . Доказать, что 0 < x36 – < 10–9.
|
|
Сложность: 4- Классы: 8,9,10
|
Числовая последовательность {xn} такова, что для каждого n > 1 выполняется условие: xn+1 = |xn| – xn–1.
Докажите, что последовательность периодическая с периодом 9.
|
|
Сложность: 4 Классы: 8,9,10
|
Барон Мюнхгаузен заявил Георгу Кантору, что он может выписать в ряд все натуральные числа без единицы так, что только конечное их число будет больше своего номера. Не хвастает ли барон?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 233]