ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для чисел а, b и с выполняется равенство  .  Следует ли из него, что  ?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 413]      



Задача 60929

Тема:   [ Тождественные преобразования ]
Сложность: 3-
Классы: 8,9

Какими должны быть p и q, чтобы выполнялось равенство  Ax4 + Bx² + C = A(x² + px + q)(x² – px + q)?

Прислать комментарий     Решение

Задача 64560

Темы:   [ Тождественные преобразования ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Для чисел а, b и с выполняется равенство  .  Следует ли из него, что  ?

Прислать комментарий     Решение

Задача 76461

Темы:   [ Разложение на множители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3-
Классы: 8,9

Разложить на множители:  (b – c)³ + (c – a)³ + (a – b)³.

Прислать комментарий     Решение

Задача 88272

Темы:   [ Разложение на множители ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3-
Классы: 6,7,8

Чему равно произведение  

Прислать комментарий     Решение

Задача 98007

Темы:   [ Тождественные преобразования ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3-
Классы: 7,8,9

Автор: Назаров Ф.

Положительные числа a, b, c, d таковы, что  a ≤ b ≤ c ≤ d  и  a + b + c + d ≥ 1.  Докажите, что  a² + 3b² + 5c² + 7d² ≥ 1.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 413]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .