ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид 1/k, где k натуральное.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 125]      



Задача 32857

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 7

Что больше:
  а)  1/101 + 1/102 + ... + 1/199 + 1/200  или 1/2 ?
  б) 1/2·3/4·5/6·...·97/98·99/100  или 1/10 ?

Прислать комментарий     Решение

Задача 34902

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа,  1 < m < n < 1986,  не является целым числом.

Прислать комментарий     Решение

Задача 60726

 [Гармонические числа]
Темы:   [ Четность и нечетность ]
[ Обыкновенные дроби ]
[ Принцип крайнего (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Докажите, что числа  Hn = 1 + 1/2 + 1/3 + ... + 1/n  при  n > 1  не будут целыми.

Прислать комментарий     Решение

Задача 64589

Темы:   [ Арифметическая прогрессия ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 10,11

Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид 1/k, где k натуральное.

Прислать комментарий     Решение

Задача 65251

Темы:   [ Четность и нечетность ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 10,11

Пусть  n > 1  – натуральное число. Выпишем дроби  1/n, 2/n, ..., n–1/n  и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через  f(n). При каких натуральных  n > 1  числа  f(n) и  f(2015n) имеют разную чётность?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .