ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD диагонали перпендикулярны. На сторонах AD и CD отмечены соответственно точки M и N так, что углы ABN и CBM прямые. Докажите, что прямые AC и MN параллельны.

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 404]      



Задача 64648

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 10,11

В выпуклом четырёхугольнике ABCD диагонали перпендикулярны. На сторонах AD и CD отмечены соответственно точки M и N так, что углы ABN и CBM прямые. Докажите, что прямые AC и MN параллельны.

Прислать комментарий     Решение

Задача 65475

Темы:   [ Параллелограммы (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 10,11

В параллелограмме АВСD точка Е – середина стороны AD, точка F – основание перпендикуляра, опущенного из вершины В на прямую СЕ.
Найдите площадь треугольника ABF, если  АВ = а,  ∠ВАF = α.

Прислать комментарий     Решение

Задача 102209

Темы:   [ Гомотетия помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

В треугольник ABC со сторонами  AB = 6,  BC = 5,  AC = 7  вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.

Прислать комментарий     Решение

Задача 108033

Темы:   [ Неравенство треугольника ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

В треугольнике ABC проведена медиана AM.
Может ли радиус вписанной окружности треугольника ABM быть ровно в два раза больше радиуса вписанной окружности треугольника ACM?

Прислать комментарий     Решение

Задача 110826

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC из вершины прямого угла C проведена медиана CD. Найдите расстояние между центрами окружностей, вписанных в треугольники ACD и BCD, если  BC = 4,  а радиус описанной окружности треугольника ABC, равен 5/2.

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .