ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 383]      



Задача 60418

Темы:   [ Теория графов (прочее) ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.

Прислать комментарий     Решение

Задача 64683

Темы:   [ Степень вершины ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

Автор: Шноль Д.Э.

Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?

Прислать комментарий     Решение

Задача 65063

Тема:   [ Степень вершины ]
Сложность: 3+
Классы: 8,9

Автор: Гравин Н.

В стране Леонардии все дороги – с односторонним движением. Каждая дорога соединяет два города и не проходит через другие города. Департамент статистики вычислил для каждого города суммарное число жителей в городах, откуда в него ведут дороги, и суммарное число жителей в городах, куда ведут дороги из него. Докажите, что хотя бы для одного города первое число оказалось не меньше второго.

Прислать комментарий     Решение

Задача 65073

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.

Прислать комментарий     Решение

Задача 66147

Темы:   [ Ориентированные графы ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9,10

В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .