ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

К натуральному числу N прибавили наибольший его делитель, меньший N, и получили степень десятки. Найдите все такие N.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 366]      



Задача 64563

Темы:   [ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

Три математика ехали в разных вагонах одного поезда. Когда поезд подъезжал к станции, математики насчитали на перроне 7, 12 и 15 скамеек. А когда поезд отъезжал, один из математиков насчитал скамеек в три раза больше, чем другой. А сколько скамеек насчитал третий?

Прислать комментарий     Решение

Задача 64692

Темы:   [ Задачи на проценты и отношения ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

В начале года в 7 классе учились 25 человек. После того как туда пришли семеро новеньких, процентный состав отличников увеличился на 10 (если в начале года он был a%, то теперь –  (a + 10)%).  Сколько теперь отличников в классе?

Прислать комментарий     Решение

Задача 64765

Темы:   [ Простые числа и их свойства ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

К натуральному числу N прибавили наибольший его делитель, меньший N, и получили степень десятки. Найдите все такие N.

Прислать комментарий     Решение

Задача 64827

Темы:   [ Деление с остатком ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

Остаток от деления натурального числа Х на 26 равен неполному частному, остаток от деления Х на 29 также равен неполному частному.
Найдите все такие Х.

Прислать комментарий     Решение

Задача 65126

Темы:   [ Задачи с ограничениями ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 10,11

На новогодний вечер пришли несколько супружеских пар, у каждой из которых было от 1 до 10 детей. Дед Мороз выбирал одного ребёнка, одну маму и одного папу из трёх разных семей и катал их в санях. Оказалось, что у него было ровно 3630 способов выбрать нужную тройку людей. Сколько всего могло быть детей на этом вечере?

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .