Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 222]
|
|
Сложность: 4- Классы: 5,6,7
|
Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.
|
|
Сложность: 4- Классы: 5,6,7
|
В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.
|
|
Сложность: 4 Классы: 8,9,10
|
В стране 100 городов, некоторые из которых соединены авиалиниями. Известно, что от каждого города можно долететь до любого другого (возможно, с пересадками).
Докажите, что можно побывать во всех городах, совершив не более а) 198 перёлетов; б) 196 перелётов.
|
|
Сложность: 4 Классы: 6,7,8
|
Решить в целых числах уравнение x² + y² + z² = 2xyz.
|
|
Сложность: 4 Классы: 9,10,11
|
В сейфе n ячеек с номерами от 1 до n. В каждой ячейке первоначально лежала карточка с её номером. Вася переложил карточки в некотором порядке так, что в i-й ячейке оказалась карточка с числом ai. Петя может менять местами любые две карточки с номерами x и y, платя за это 2|x – y| рублей. Докажите, что Петя сможет вернуть все карточки на исходные места, заплатив не более |a1 – 1| + |a2 – 2| + ... + |an – n| рублей.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 222]