Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 222]
В прямоугольном треугольнике
ABC угол
C — прямой, а сторона
CA = 4
. На катете
BC взята точка
D , причём
CD = 1
. Окружность
радиуса
проходит через точки
C и
D и касается
в точке
C окружности, описанной около треугольника
ABC .
Найдите площадь треугольника
ABC .
Даны две концентрические окружности. С помощью циркуля и
линейки проведите прямую, пересекающую эти окружности так,
чтобы меньшая хорда была равна половине большей.
|
|
Сложность: 4 Классы: 9,10,11
|
Даны окружность, её хорда AB и середина W меньшей дуги AB. На большей дуге AB выбирается произвольная точка C. Касательная к окружности, проведённая из точки C, пересекает касательные, проведённые из точек A и B, в точках X и Y соответственно. Прямые WX и WY пересекают прямую AB в точках N и M соответственно. Докажите, что длина отрезка NM не зависит от выбора точки C.
Клетки бесконечного клетчатого листа бумаги раскрасили в чёрный и белый цвета в шахматном порядке. Пусть X – треугольник площади S с вершинами в узлах сетки. Покажите, что есть такой подобный X треугольник с вершинами в узлах сетки, что площадь его белой части равна площади чёрной части и равна S.
|
|
Сложность: 4 Классы: 10,11
|
Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке C пересекает прямую AB в точке D. Пусть I – центр вписанной окружности,
треугольника ABC. Прямые AI и BI пересекают биссектрису угла CDB в точках Q и P соответственно. Пусть M – середина отрезка PQ. Докажите, что прямая MI проходит через середину дуги ACB окружности ω.
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 222]