ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Садыков Р.

Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая   продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что  BFKL.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 122]      



Задача 53856

 [Теорема Чевы]
Темы:   [ Теоремы Чевы и Менелая ]
[ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9

Пусть точки A1, B1 и C1 принадлежат сторонам соответственно BC, AC и AB треугольника ABC.
Докажите, что отрезки AA1, BB1, CC1 пересекаются в одной точке тогда и только тогда, когда  

Прислать комментарий     Решение

Задача 55094

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9

Продолжения сторон AD и BC выпуклого четырёхугольника ABCD пересекаются в точке M, а продолжения сторон AB и CD – в точке O. Отрезок MO перпендикулярен биссектрисе угла AOD. Найдите отношение площадей треугольников AOD и BOC, если  OA = 6,  OD = 4,  CD = 1.

Прислать комментарий     Решение

Задача 56470

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9

На продолжениях оснований AD и BC трапеции ABCD за точки A и C взяты точки K и L. Отрезок KL пересекает стороны AB и CD в точках M и N, а диагонали AC и BD в точках O и P. Докажите, что если  KM = NL,  то  KO = PL.

Прислать комментарий     Решение

Задача 56532

Темы:   [ Трапеции (прочее) ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9

Продолжения боковых сторон трапеции с основаниями AD и BC пересекаются в точке O. Концы отрезка EF, параллельного основаниям и проходящего через точку пересечения диагоналей, лежат соответственно на сторонах AB и CD. Докажите, что  AE : CF = AO : CO.

Прислать комментарий     Решение

Задача 64871

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Две пары подобных треугольников ]
[ Прямая Симсона ]
Сложность: 4-
Классы: 8,9,10

Автор: Садыков Р.

Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая   продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что  BFKL.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .