ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружности ω1 и ω2, касающиеся внешним образом в точке L, вписаны в угол BAC. Окружность ω1 касается луча AB в точке E, а окружность ω2 – луча AC в точке M. Прямая EL пересекает повторно окружность ω2 в точке Q. Докажите, что  MQ || AL.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 329]      



Задача 64810

Темы:   [ Касающиеся окружности ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 9,10

Автор: Белухов Н.

Девять окружностей расположены вокруг произвольного треугольника так, как показано на рисунке. Окружности, касающиеся одной и той же стороны треугольника, равны между собой. Докажите, что три прямые на рисунке пересекаются в одной точке. (Прямые проходят через вершины треугольника и центры соответствующих окружностей.)

Прислать комментарий     Решение

Задача 64872

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Окружности ω1 и ω2, касающиеся внешним образом в точке L, вписаны в угол BAC. Окружность ω1 касается луча AB в точке E, а окружность ω2 – луча AC в точке M. Прямая EL пересекает повторно окружность ω2 в точке Q. Докажите, что  MQ || AL.

Прислать комментарий     Решение

Задача 65730

Темы:   [ Касающиеся окружности ]
[ ГМТ - прямая или отрезок ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Робот-пылесос, имеющий форму круга, проехал по плоскому полу. Для каждой точки граничной окружности робота можно указать прямую, на которой эта точка оставалась в течение всего времени движения. Обязательно ли и центр робота оставался на некоторой прямой в течение всего времени движения?

Прислать комментарий     Решение

Задача 102522

Темы:   [ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

Две окружности касаются друг друга внешним образом в точке A. Через точку B на их общей касательной AB проведены две прямые, одна из которых пересекает первую окружность в точках M и N, а другая вторую окружность в точках P и Q. Известно, что AB = 6, BM = 9, BP = 5. Найдите отношение площадей треугольников MNO и PQO, где точка O — точка пересечения прямых MP и NQ.

Прислать комментарий     Решение


Задача 102523

Темы:   [ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

Окружность C2 расположена внутри окружности C1 и касается ее в точке P. Секущая MN окружности C1(M, N $ \in$ C1) и секущая ST окружности C2 ( S, T $ \in$ C2) пересекаются в точке Q, причем PQ является касательной к окружности C1. Отрезки NS и TM пересекаются в точке O. Площадь треугольника MON в 16 раз больше площади треугольника OTS. Найдите длину отрезка PQ, если SQ = 9, MQ = 6 и TQ > SQ, NQ > MQ.

Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .