ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Площадь
>>
Отношения площадей
>>
Отношение площадей треугольников с общим углом
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике ABCD O – точка пересечения диагоналей, а M – середина стороны BC. Прямые MO и AD пересекаются в точке E. Докажите, что AE : ED = SABO : SCDO. Решение |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 95]
В треугольнике ABC на сторонах AB и AC выбраны соответственно точки B1 и C1, причём AB1 : AB = 1 : 3 и AC1 : AC = 1 : 2. Через точки A, B1 и C1 проведена окружность. Через точку B1 проведена прямая, пересекающая отрезок AC1 в точке D, а окружность — в точке E. Найдите площадь треугольника B1C1E, если AC1 = 4, AD = 1, DE = 2, а площадь треугольника ABC равна 12.
В треугольнике ABC на сторонах AB и BC выбраны соответственно точки A1 и C1, причём A1B : AB = 1 : 2 и BC1 : BC = 1 : 4. Через точки A1, B и C1 проведена окружность. Через точку A1 проведена прямая, пересекающая отрезок BC1 в точке D, а окружность в точке E. Найдите площадь треугольника A1C1E, если BC1 = 6, BD = 2, DE = 3, а площадь треугольника ABC равна 32.
В выпуклом четырёхугольнике ABCD O – точка пересечения диагоналей, а M – середина стороны BC. Прямые MO и AD пересекаются в точке E. Докажите, что AE : ED = SABO : SCDO.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 95] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|