ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В таблицу n×n записаны n² чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна. ![]() |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 95]
Через две вершины треугольника проведены прямые, разбивающие его на три треугольника и четырёхугольник. а) Могут ли площади всех четырёх частей быть равны? б) Какие три из этих частей могут иметь равные площади? Во сколько раз отличается от них площадь четвёртой части?
Три пары противоположных сторон шестиугольника параллельны. Докажите, что отрезки, соединяющие их середины пересекаются в одной точке.
В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.
Точки K и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AK = BK и AN = 2NC.
Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 95] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |