ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

   Решение

Задачи

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 2247]      



Задача 64881

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
[ Инверсия помогает решить задачу ]
[ Точка Лемуана ]
Сложность: 5-
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I. Касательные к описанной окружности треугольника AIC в точках A, C пересекаются в точке X. Касательные к описанной окружности треугольника BID в точках B, D пересекаются в точке Y. Докажите, что точки X, I, Y лежат на одной прямой.

Прислать комментарий     Решение

Задача 64883

Темы:   [ Общие четырехугольники ]
[ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Поворот помогает решить задачу ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Дан четырёхугольник KLMN. Окружность с центром O пересекает его сторону KL в точках A и A1, сторону LM в точках B и B1, и т.д. Докажите что
  а) если описанные окружности треугольников KDA, LAB, MBC и NCD пересекаются в одной точке P, то описанные окружности треугольников KD1A1, LA1B1, MB1C1 и NC1D1 также пересекаются в одной точке Q;
  б) точка O лежит на серединном перпендикуляре к PQ.

Прислать комментарий     Решение

Задача 64884

Темы:   [ Описанные четырехугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Радикальная ось ]
Сложность: 5-
Классы: 10,11

В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны.

Прислать комментарий     Решение

Задача 64977

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

Прислать комментарий     Решение

Задача 66267

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Инверсия помогает решить задачу ]
[ Точка Нагеля. Прямая Нагеля ]
[ Теоремы Чевы и Менелая ]
Сложность: 5-
Классы: 9,10,11

Диагонали вписанного четырёхугольника ABCD пересекаются в точке M. Окружность ω касается отрезка MA в точке P, отрезка MD в точке Q и описанной окружности Ω четырёхугольника ABCD в точке X. Докажите, что X лежит на радикальной оси описанных окружностей ωQ и ωP треугольников ACQ и BDP.

Прислать комментарий     Решение

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .