ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Миша заметил, что на электронном табло, показывающем курс доллара к рублю (4 цифры, разделенные десятичной запятой), горят те же самые четыре различные цифры, что и месяц назад, но в другом порядке. При этом курс вырос ровно на 20%. Приведите пример того, как такое могло произойти.

   Решение

Задачи

Страница: << 183 184 185 186 187 188 189 >> [Всего задач: 1111]      



Задача 65133

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 6,7

В ряд стояло 10 детей. В сумме у девочек и у мальчиков орехов было поровну. Каждый ребёнок отдал по ореху каждому из стоящих правее его. После этого у девочек стало на 25 орехов больше, чем было. Сколько в ряду девочек?

Прислать комментарий     Решение

Задача 65188

Темы:   [ Десятичная система счисления ]
[ Задачи на проценты и отношения ]
[ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9

Миша заметил, что на электронном табло, показывающем курс доллара к рублю (4 цифры, разделенные десятичной запятой), горят те же самые четыре различные цифры, что и месяц назад, но в другом порядке. При этом курс вырос ровно на 20%. Приведите пример того, как такое могло произойти.

Прислать комментарий     Решение

Задача 65516

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 7,8,9,10,11

В клетках квадрата 3×3 записаны буквы (см. рисунок). Можно ли их расставить так, чтобы каждые две буквы, исходно отстоявшие на ход коня, после перестановки оказались в клетках, отстоящих на ход короля?

Прислать комментарий     Решение

Задача 65633

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

В комнате у Папы Карло на каждой стене висят часы, причём они все показывают неверное время: первые часы ошибаются на 2 минуты, вторые – на 3 минуты, третьи – на 4 минуты и четвёртые – на 5 минут. Однажды Папа Карло, выходя на улицу, решил узнать точное время и увидел такие показания часов: 14:54, 14:57, 15:02 и 15:03. Помогите Папе Карло определить точное время.

Прислать комментарий     Решение

Задача 65902

Темы:   [ Математическая логика (прочее) ]
[ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 7,8

В классе учатся 30 человек: отличники, троечники и двоечники. Отличники на все вопросы отвечают правильно, двоечники всегда ошибаются, а троечники на заданные им вопросы строго по очереди то отвечают верно, то ошибаются. Всем ученикам было задано по три вопроса: "Ты отличник?", "Ты троечник?", "Ты двоечник?". Ответили "Да" на первый вопрос – 19 учащихся, на второй – 12, на третий – 9. Сколько троечников учится в этом классе?

Прислать комментарий     Решение

Страница: << 183 184 185 186 187 188 189 >> [Всего задач: 1111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .