ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На гипотенузе AB прямоугольного треугольника ABC выбрана такая точка D, что  BD = BC,  а на катете BC – такая точка E, что  DE = BE.
Докажите, что  AD + CE = DE.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 352]      



Задача 64313

Темы:   [ Необычные построения (прочее) ]
[ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 6,7

Петя вырезал из пластмассы неравносторонний треугольник. Покажите, каким образом можно, пользуясь только этим инструментом как шаблоном, построить биссектрису какого-нибудь угла треугольника, равного вырезанному.

Прислать комментарий     Решение

Задача 64605

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

На сторонах АВ и ВС треугольника АВС выбраны точки К и М соответственно так, что  КМ || АС.  Отрезки АМ и КС пересекаются в точке О. Известно, что  АК = АО  и  КМ = МС.  Докажите, что  АМ = КВ.

Прислать комментарий     Решение

Задача 64869

Темы:   [ ГМТ - прямая или отрезок ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9,10

Дана окружность с центром O и не лежащая на ней точка P. Пусть X – произвольная точка окружности, Y – точка пересечения биссектрисы угла POX и серединного перпендикуляра к отрезку PX. Найдите геометрическое место точек Y.

Прислать комментарий     Решение

Задача 65086

Темы:   [ Трапеции (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD  AD = АВ + CD.  Оказалось, что биссектриса угла А проходит через середину стороны ВС.
Докажите, что биссектриса угла D также проходит через середину ВС.

Прислать комментарий     Решение

Задача 65222

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 7,8

На гипотенузе AB прямоугольного треугольника ABC выбрана такая точка D, что  BD = BC,  а на катете BC – такая точка E, что  DE = BE.
Докажите, что  AD + CE = DE.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .