ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие. Рассеянный Учёный нажал очень много кнопок в случайной последовательности. Найдите приблизительно вероятность, с которой результат получившейся цепочки действий – нечётное число?

   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 233]      



Задача 61319

Темы:   [ Ограниченность, монотонность ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 10,11

Последовательность чисел {xn} задана условиями:

x1 $\displaystyle \geqslant$ - a,        xn + 1 = $\displaystyle \sqrt{a+x_n}$.

Докажите, что последовательность {xn} монотонна и ограничена. Найдите ее предел.

Прислать комментарий     Решение

Задача 65209

Темы:   [ Задачи на смеси и концентрации ]
[ Линейные рекуррентные соотношения ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 10,11

У Ивана-царевича есть два сосуда емкостью по 1 л, один из которых полностью заполнен обычной водой, а в другом находится a л живой воды,
0 < a < 1.  Он может переливать только из сосуда в сосуд любой объем жидкости до любого уровня без переполнений и хочет за конечное число таких переливаний получить 40-процентный раствор живой воды в одном из сосудов. При каких значениях a Иван-царевич сможет это сделать? Считайте, что уровень жидкости в каждом из сосудов можно точно измерить в любой момент времени.

Прислать комментарий     Решение

Задача 65275

Темы:   [ Дискретное распределение ]
[ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

На рисунке изображена схема трассы для картинга. Старт и финиш в точке A, причём картингист по дороге может сколько угодно раз заезжать в точку A и возвращаться на круг.

На путь от A до B или обратно юный гонщик Юра тратит минуту. На путь по кольцу Юра также тратит минуту. По кольцу можно ездить только против часовой стрелки (стрелки показывают возможные направление движения). Юра не поворачивает назад на полпути и не останавливается. Длительность заезда 10 минут. Найдите число возможных различных маршрутов (последовательностей прохождения участков).

Прислать комментарий     Решение

Задача 65336

Темы:   [ Дискретное распределение ]
[ Линейные рекуррентные соотношения ]
[ Предел последовательности, сходимость ]
[ Условная вероятность ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 10,11

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие. Рассеянный Учёный нажал очень много кнопок в случайной последовательности. Найдите приблизительно вероятность, с которой результат получившейся цепочки действий – нечётное число?

Прислать комментарий     Решение

Задача 98036

Темы:   [ Произведения и факториалы ]
[ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Задачи с ограничениями ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

Рассмотрим все возможные наборы чисел из множества  {1, 2, 3, ..., n},  не содержащие двух соседних чисел.
Докажите, что сумма квадратов произведений чисел в этих наборах равна  (n + 1)! – 1.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .