Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 107]
|
|
Сложность: 4- Классы: 8,9,10,11
|
В Анчурии готовятся президентские выборы, в которых хочет победить президент Мирафлорес. Ровно половина многочисленных избирателей поддерживает Мирафлореса, а
другая половина – Дика Малони. Мирафлорес тоже является избирателем. По закону он имеет право поделить всех избирателей на два избирательных округа по своему усмотрению. В каждом из округов голосование проводится следующим образом: каждый избиратель отмечает на бюллетене имя своего кандидата; все бюллетени помещаются в урну. Затем из урны достаётся один случайный бюллетень, и тот, чьё имя на нём отмечено, победит в этом округе. Кандидат побеждает на выборах,
только если победит в обоих округах. Если победитель не выявился, назначается следующий тур голосования по тем же правилам. Как Мирафлорес должен поделить избирателей, чтобы максимизировать вероятность своей победы на первом туре?
|
|
Сложность: 4- Классы: 9,10,11
|
В страшную грозу по верёвочной лестнице цепочкой поднимаются n гномиков. Если вдруг случится удар грома, то от испуга каждый гномик, независимо от других, может упасть с вероятностью p (0 < p < 1). Если гномик падает, то он сшибает и всех гномиков, которые находятся ниже. Найдите:
а) Вероятность того, что упадёт ровно k гномиков.
б) Математическое ожидание числа упавших гномиков.
|
|
Сложность: 4- Классы: 9,10,11
|
Бросим симметричную монету n раз. Предположим, что орёл выпал m раз. Число m/n называется частотой выпадения орла. Число m/n – 0,5 называется отклонением частоты от вероятности, а число |m/n – 0,5| называется абсолютным отклонением. Заметим, что отклонение и абсолютное отклонение являются случайными величинами. Например, если монету бросили 5 раз, и два раза выпал орёл, то отклонение равно ⅖ – 0,5 = –0,1, а абсолютное отклонение равно 0,1.
Эксперимент состоит из двух частей: сначала монету бросают 10 раз, а потом – 100 раз. В каком из этих случаев больше математическое ожидание абсолютного отклонения частоты выпадения орла от вероятности?
|
|
Сложность: 4- Классы: 9,10,11
|
На столе разложена колода игральных карт (например, в ряд). Поверх каждой карты положили карту другой колоды. Некоторые карты, возможно, совпали. Найдите:
а) математическое ожидание числа совпадений;
б) дисперсию числа совпадений.
|
|
Сложность: 4- Классы: 7,8,9,10,11
|
В выпуклом шестиугольнике независимо друг от друга выбраны две случайные диагонали.
Найдите вероятность того, что эти диагонали пересекаются внутри шестиугольника (внутри – то есть не в вершине).
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 107]