Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 402]
Каждая из боковых сторон AB и CD трапеции ABCD разделена на пять равных частей. Пусть M и N – вторые точки деления на боковых сторонах, считая от вершин B и C соответственно. Найдите MN, если основания AD = a и BC = b.
|
|
Сложность: 3+ Классы: 8,9,10
|
На высоте BD треугольника ABC взята такая точка E, что ∠AEC = 90°. Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.
|
|
Сложность: 3+ Классы: 8,9,10
|
В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис).
Найдите отношение сторон прямоугольника.
В треугольнике ABC проведена медиана CF. Точки X и Y симметричны F относительно медиан AD и BE соответственно.
Докажите, что центры описанных окружностей треугольников BEX и ADY совпадают.
В треугольнике одна из средних линий больше одной из медиан. Докажите, что этот треугольник – тупоугольный.
Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 402]