ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть M и N – середины гипотенузы AB и катета BC прямоугольного треугольника ABC соответственно. Вневписанная окружность треугольника ACM касается стороны AM в точке Q, а прямой AC – в точке P. Докажите, что точки P, Q и N лежат на одной прямой.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 31]      



Задача 65644

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Медиана, проведенная к гипотенузе ]
[ Вневписанные окружности ]
[ Прямая Симсона ]
Сложность: 4-
Классы: 8,9,10

Пусть M и N – середины гипотенузы AB и катета BC прямоугольного треугольника ABC соответственно. Вневписанная окружность треугольника ACM касается стороны AM в точке Q, а прямой AC – в точке P. Докажите, что точки P, Q и N лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .