ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Куб, состоящий из $(2n)^3$ единичных кубиков, проткнут несколькими спицами, параллельными рёбрам куба. Каждая спица протыкает ровно 2$n$ кубиков, каждый кубик проткнут хотя бы одной спицей. ![]() ![]() На сторонах некоторого многоугольника расставлены стрелки. ![]() ![]() ![]() Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 180]
В прямоугольном треугольнике один из углов равен 30°. Докажите, что в этом треугольнике отрезок перпендикуляра, проведённого к гипотенузе через её середину до пересечения с катетом, втрое меньше большего катета.
В треугольнике PQR сторона PQ не больше чем 9, сторона PR не больше чем 12. Площадь треугольника не меньше чем 54.
Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Окружность, проходящая через вершину $B$ прямого угла и середину гипотенузы прямоугольного треугольника $ABC$, пересекает катеты этого треугольника в точках $M$ и $N$. Оказалось, что $AC = 2MN$. Докажите, что $M$ и $N$ — середины катетов треугольника $ABC$.
Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 180] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |