ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У аптекаря есть три гирьки, с помощью которых он одному покупателю отвесил 100 г йода, другому – 101 г мёда, а третьему – 102 г перекиси водорода. Гирьки он ставил всегда на одну чашу весов, а товар – на другую. Могло ли быть так, что каждая гирька легче 90 г?

   Решение

Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 1311]      



Задача 65888

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 5,6

Иван Царевич хочет выйти из круглой комнаты с шестью дверями, пять из которых заперты на ключ. За одну попытку он может проверить три любые двери, и если одна из них не заперта, то он в неё выйдет. После каждой попытки Баба-Яга запирает дверь, которая была открыта, и отпирает одну из соседних дверей. Какую именно, Иван Царевич не знает. Как ему действовать, чтобы наверняка выйти из комнаты?

Прислать комментарий     Решение

Задача 65902

Темы:   [ Математическая логика (прочее) ]
[ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 7,8

В классе учатся 30 человек: отличники, троечники и двоечники. Отличники на все вопросы отвечают правильно, двоечники всегда ошибаются, а троечники на заданные им вопросы строго по очереди то отвечают верно, то ошибаются. Всем ученикам было задано по три вопроса: "Ты отличник?", "Ты троечник?", "Ты двоечник?". Ответили "Да" на первый вопрос – 19 учащихся, на второй – 12, на третий – 9. Сколько троечников учится в этом классе?

Прислать комментарий     Решение

Задача 65916

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 10,11

100 включённых и 100 выключенных фонариков случайным образом разложены по двум коробкам. У каждого фонарика есть кнопка, нажатие которой выключает горящий фонарик и зажигает выключенный. Ваши глаза завязаны, и вы не можете видеть, горит ли фонарик. Но вы можете перекладывать фонарики из коробки в коробку и нажимать на них кнопки. Придумайте способ добиться того, чтобы горящих фонариков в коробках было поровну.

Прислать комментарий     Решение

Задача 65924

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 6,7

Замените буквы цифрами (все цифры должны быть различными) так, чтобы получилось верное равенство:   A : B : C + D : E : F + G : H : I = 1.

Прислать комментарий     Решение

Задача 65978

Темы:   [ Взвешивания ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 6,7

У аптекаря есть три гирьки, с помощью которых он одному покупателю отвесил 100 г йода, другому – 101 г мёда, а третьему – 102 г перекиси водорода. Гирьки он ставил всегда на одну чашу весов, а товар – на другую. Могло ли быть так, что каждая гирька легче 90 г?

Прислать комментарий     Решение

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .