ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 77]      



Задача 67155

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Шахматные доски и шахматные фигуры ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Теорема Пика ]
Сложность: 5
Классы: 8,9,10,11

Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.
Прислать комментарий     Решение


Задача 73665

Темы:   [ Системы точек ]
[ Метод ГМТ ]
[ Метод ГМТ в пространстве ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Движение помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Объем помогает решить задачу ]
Сложность: 10-
Классы: 9,10,11

Какое наибольшее число точек можно разместить a) на плоскости; б)* в пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным?
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Прислать комментарий     Решение


Задача 64944

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3+
Классы: 8,9

Вершину A параллелограмма ABCD соединили отрезками с серединами сторон BC и CD. Один из этих отрезков оказался вдвое длиннее другого. Определите, каким является угол ВАD: острым, прямым или тупым.

Прислать комментарий     Решение

Задача 66015

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9,10,11

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

Прислать комментарий     Решение

Задача 111812

Темы:   [ Свойства симметрий и осей симметрии ]
[ Шестиугольники ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .