ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность с центром I касается сторон AB , BC , AC неравнобедренного треугольника ABC в точках C1 , A1 , B1 соответственно. Окружности ωB и ωC вписаны в четырехугольники BA1IC1 и CA1IB1 соответственно. Докажите, что общая внутренняя касательная к ωB и ωC , отличная от IA1 , проходит через точку A . ![]() ![]() Внутри остроугольного треугольника ABC постройте (с помощью циркуля и линейки) такую точку K, что ∠KBA = 2∠KAB и ∠KBC = 2∠KCB. ![]() ![]() |
Страница: << 13 14 15 16 17 18 19 [Всего задач: 93]
Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.
Внутри остроугольного треугольника ABC постройте (с помощью циркуля и линейки) такую точку K, что ∠KBA = 2∠KAB и ∠KBC = 2∠KCB.
Страница: << 13 14 15 16 17 18 19 [Всего задач: 93] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |