ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Гичев В.М.

Можно ли представить число $11^{2018}$ в виде суммы кубов двух натуральных чисел?

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 368]      



Задача 60831

Темы:   [ Китайская теорема об остатках ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 9,10,11

Пусть натуральные числа m1, m2, ..., mn попарно взаимно просты. Докажите, что если числа x1, x2, ..., xn пробегают полные системы вычетов по модулям m1, m2, ..., mn соответственно, то число  x = x1m2...mn + m1x2m3...mn + ... + m1m2...mn–1xn  пробегает полную систему вычетов по модулю m1m2...mn. Выведите отсюда китайскую теорему об остатках (см. задачу 60825).

Прислать комментарий     Решение

Задача 66121

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

При каких натуральных n для каждого целого  k ≥ n  найдётся кратное n число с суммой цифр k?
Прислать комментарий     Решение


Задача 66487

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Гичев В.М.

Можно ли представить число $11^{2018}$ в виде суммы кубов двух натуральных чисел?
Прислать комментарий     Решение


Задача 66999

Темы:   [ Теория алгоритмов (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Дан бесконечный запас белых, синих и красных кубиков. По кругу расставляют любые $N$ из них. Робот, став в любое место круга, идёт по часовой стрелке и, пока не останется один кубик, постоянно повторяет такую операцию: уничтожает два ближайших кубика перед собой и ставит позади себя новый кубик того же цвета, если уничтоженные одинаковы, и третьего цвета, если уничтоженные двух разных цветов. Назовём расстановку кубиков хорошей, если цвет оставшегося в конце кубика не зависит от места, с которого стартовал робот. Назовём $N$ удачным, если при любом выборе $N$ кубиков все их расстановки хорошие. Найдите все удачные $N$.

Прислать комментарий     Решение

Задача 78600

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 8,9,10

Существуют ли два таких последовательных натуральных числа, что сумма цифр каждого из них делится на 125?
Найти наименьшую пару таких чисел или доказать, что их не существует.

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 368]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .