ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Tran Quang Hung

Точка $P$ лежит внутри выпуклого четырехугольника $ABCD$. Общие внутренние касательные к вписанным окружностям треугольников $PAB$ и $PCD$ пересекаются в точке $Q$, а общие внутренние касательные к вписанным окружностям треугольников $PBC$ и $PAD$ – в точке $R$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.

   Решение

Задачи

Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 1024]      



Задача 66955

Темы:   [ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Tran Quang Hung

Точка $P$ лежит внутри выпуклого четырехугольника $ABCD$. Общие внутренние касательные к вписанным окружностям треугольников $PAB$ и $PCD$ пересекаются в точке $Q$, а общие внутренние касательные к вписанным окружностям треугольников $PBC$ и $PAD$ – в точке $R$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 67144

Темы:   [ Вписанные и описанные многоугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9,10,11

Пятиугольник $ABCDE$ описан около окружности. Углы при его вершинах $A$, $C$ и $E$ равны $100^\circ$. Найдите угол $ACE$.
Прислать комментарий     Решение


Задача 102490

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

В треугольнике KLM проведена биссектриса KP . Окружность, вписанная в треугольник KLP , касается стороны KL в точке Q , причём LQ = a . На сторонах KL и LM выбраны точки E и R соответственно так, что прямая ER проходит через центр окружности, вписанной в треугольник KLM . Найдите длину биссектрисы KP , если известно, что EL + LR = b , а отношение площадей треугольников KLP и ELR равно α .
Прислать комментарий     Решение


Задача 108570

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

На основании AB равнобедренного треугольника ABC выбрана точка D так, что окружность, вписанная в треугольник BCD, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков CA и CD и отрезка AD (вневписанная окружность треугольника ACD). Докажите, что этот радиус равен одной четверти высоты треугольника ABC, опущенной на его боковую сторону.

Прислать комментарий     Решение

Задача 108597

Темы:   [ Геометрические неравенства ]
[ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

В угол с вершиной C вписана окружность, касающаяся сторон угла в точках A и B . Отрезок расположен внутри невыпуклого криволинейного треугольника ABC , где AB – меньшая дуга окружности. Докажите, что длина этого отрезка меньше длины отрезка AC .
Прислать комментарий     Решение


Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .