ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что $AA_1 = BB_1 = CC_1 = R$, где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$. Решение |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 563]
Точка M лежит на диаметре AB окружности. Хорда CD
окружности проходит через точку M и пересекает прямую AB под
углом в 45°.
На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что $AA_1 = BB_1 = CC_1 = R$, где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.
Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём ВМ : МС = 1 : 3. На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?
Внутри острого угла XOY взяты точки M и N, причём ∠XON = ∠YOM. На луче OX отмечена точка Q так, что ∠NQO = ∠MQX, а на луче OY – точка P так, что ∠NPO = ∠MPY. Докажите, что длины ломаных MPN и MQN равны.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|