ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Глебов А.

Пусть $n$ – натуральное число. Назовём последовательность $a_1, a_2, ..., a_n$ интересной, если для каждого  $i$ = 1, 2, ..., $n$  верно одно из равенств  $a_i = i$  или  $a_i = i$ + 1.  Назовём интересную последовательность чётной, если сумма её членов чётна, и нечётной – иначе. Для каждой нечётной интересной последовательности нашли произведение её чисел и записали его на первый листок. Для каждой чётной – сделали то же самое и записали на второй листок. На каком листке сумма чисел больше и на сколько? (Дайте ответ в зависимости от $n$.)

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 328]      



Задача 65867

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9,10,11

Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наибольшее количество ягод может съесть лиса?

Прислать комментарий     Решение

Задача 67069

Темы:   [ Последовательности (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10,11

Автор: Глебов А.

Пусть $n$ – натуральное число. Назовём последовательность $a_1, a_2, ..., a_n$ интересной, если для каждого  $i$ = 1, 2, ..., $n$  верно одно из равенств  $a_i = i$  или  $a_i = i$ + 1.  Назовём интересную последовательность чётной, если сумма её членов чётна, и нечётной – иначе. Для каждой нечётной интересной последовательности нашли произведение её чисел и записали его на первый листок. Для каждой чётной – сделали то же самое и записали на второй листок. На каком листке сумма чисел больше и на сколько? (Дайте ответ в зависимости от $n$.)

Прислать комментарий     Решение

Задача 78251

Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 10,11

Дана последовательность чисел F1, F2, ...;  F1 = F2 = 1  и   Fn+2 = Fn + Fn+1.  Доказать, что F5k делится на 5 при  k = 1, 2, ... .

Прислать комментарий     Решение

Задача 78267

Темы:   [ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

a, b, p – любые целые числа. Доказать, что найдутся такие взаимно простые k, l, что  ak + bl  делится на p.

Прислать комментарий     Решение

Задача 78667

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3+
Классы: 11

По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 328]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .