Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 328]
[Формула Бине]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Докажите по индукции формулу Бине:
Fn =
,
где
=
— ``золотое сечение'' или
число Фидия, а
=
(``фи с
крышкой'') — сопряженное к нему.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что каждое целое число
A представимо в виде
A = a0 + 2a1 + 22a2 +...+ 2nan,
где каждое из чисел
ak = 0,
1 или -1 и
akak + 1 = 0 для всех
0
k n - 1, причем
такое представление единственно.
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что для любого числа
p > 2 найдется
такое число
, что
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Хозяйка испекла квадратный торт и отрезала от него несколько кусков. Первый разрез проведён параллельно стороне исходного квадрата от края до края. Следующий разрез проведён в оставшейся части от края до края перпендикулярно предыдущему разрезу, далее аналогично (сколько-то раз). Все отрезанные куски имеют равную площадь. Может ли оставшаяся часть торта быть квадратом?
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Имеется кучка из 100 камней. Двое играют в следующую игру. Первый
игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый
может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл
соперник?
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 328]