ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан клетчатый квадрат $n\times n$, где  $n$ > 1.  Кроссвордом будем называть любое непустое множество его клеток, а словом – любую горизонтальную и любую вертикальную полоску (клетчатый прямоугольник шириной в одну клетку), целиком состоящую из клеток кроссворда и не содержащуюся ни в какой большей полоске из клеток кроссворда (ни горизонтальной, ни вертикальной). Пусть $x$ – количество слов в кроссворде, $y$ – наименьшее количество слов, которыми можно покрыть кроссворд. Найдите максимум отношения $\frac{x}{y}$ при данном $n$.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 383]      



Задача 66727

Темы:   [ Деревья ]
[ Ориентированные графы ]
[ Индукция (прочее) ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

В виртуальном компьютерном государстве не менее двух городов. Некоторые пары городов соединены дорогой, причём из каждого города можно добраться по дорогам до любого другого (переходить с дороги на дорогу разрешается только в городах). Если при этом можно, начав движение из какого-то города и не проходя дважды по одной и той же дороге, вернуться в этот город, государство называется сложным, иначе – простым. Петя и Вася играют в такую игру. В начале игры Петя указывает на каждой дороге направление, в котором по ней можно двигаться, и помещает в один из городов туриста. Далее за ход Петя перемещает туриста по дороге в разрешённом направлении в соседний город, а Вася в ответ меняет направление одной из дорог, входящей или выходящей из города, куда попал турист. Вася победит, если в какой-то момент Петя не сможет сделать ход. Докажите, что
  а) в простом государстве Петя может играть так, чтобы не проиграть, как бы ни играл Вася;
  б) в сложном государстве Вася может гарантировать себе победу, как бы ни играл Петя.

Прислать комментарий     Решение

Задача 67076

Темы:   [ Таблицы и турниры (прочее) ]
[ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Дан клетчатый квадрат $n\times n$, где  $n$ > 1.  Кроссвордом будем называть любое непустое множество его клеток, а словом – любую горизонтальную и любую вертикальную полоску (клетчатый прямоугольник шириной в одну клетку), целиком состоящую из клеток кроссворда и не содержащуюся ни в какой большей полоске из клеток кроссворда (ни горизонтальной, ни вертикальной). Пусть $x$ – количество слов в кроссворде, $y$ – наименьшее количество слов, которыми можно покрыть кроссворд. Найдите максимум отношения $\frac{x}{y}$ при данном $n$.

Прислать комментарий     Решение

Задача 67162

Темы:   [ Теория алгоритмов (прочее) ]
[ Обход графов ]
Сложность: 4
Классы: 8,9,10,11

В клетчатом квадрате между каждыми двумя соседними по стороне клетками есть закрытая дверь. Жук начинает с какой-то клетки и ходит по клеткам, проходя через двери. Закрытую дверь он открывает в ту сторону, в которую идёт, и оставляет дверь открытой. Через открытую дверь жук может пройти только в ту сторону, в которую дверь была открыта. Докажите, что если жук в какой-либо момент захочет вернуться в исходную клетку, то он сможет это сделать.
Прислать комментарий     Решение


Задача 78242

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

На шахматной доске выбраны две клетки одинакового цвета.
Доказать, что ладья, начиная с первой, может обойти все клетки по разу, а на второй выбранной клетке побывать два раза.

Прислать комментарий     Решение

Задача 78599

Темы:   [ Классическая комбинаторика (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4
Классы: 9,10,11

На клетчатой доске 11×11 отмечено 22 клетки так, что на каждой вертикали и на каждой горизонтали отмечено ровно две клетки. Два расположения отмеченных клеток эквивалентны, если, меняя любое число раз вертикали между собой и горизонтали между собой, мы из одного расположения можем получить другое. Сколько существует неэквивалентных расположений отмеченных клеток?

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .