ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 383]      



Задача 67325

Темы:   [ Обход графов ]
[ Теория графов (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Петя и Вася независимо друг от друга разбивают белую клетчатую доску $100\times 100$ на произвольные группы клеток, каждая из чётного (но не обязательно все из одинакового) числа клеток, каждый  – на свой набор групп. Верно ли, что после этого всегда можно покрасить по половине клеток в каждой группе из разбиения Пети в чёрный цвет так, чтобы в каждой группе из разбиения Васи было поровну чёрных и белых клеток?
Прислать комментарий     Решение


Задача 64633

Темы:   [ Числовые таблицы и их свойства ]
[ Теория графов (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 10,11

Петя поставил на доску 50×50 несколько фишек, в каждую клетку – не больше одной. Докажите, что у Васи есть способ поставить на свободные поля этой же доски не более 99 новых фишек (возможно, ни одной) так, чтобы по-прежнему в каждой клетке стояло не больше одной фишки, и в каждой строке и каждом столбце этой доски оказалось чётное количество фишек.

Прислать комментарий     Решение

Задача 65676

Темы:   [ Правило произведения ]
[ Теория графов (прочее) ]
Сложность: 4+
Классы: 8,9,10

В стране лингвистов существует n языков. Там живет m людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно k. Оказалось, что  11nk ≤ m/2.
Докажите, что тогда в стране найдутся хотя бы mn пар людей, которые не смогут поговорить без посредников.

Прислать комментарий     Решение

Задача 86105

Темы:   [ Теория игр (прочее) ]
[ Теория графов (прочее) ]
[ Необычные конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 8,9,10

На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.

Прислать комментарий     Решение

Задача 98057

Темы:   [ НОД и НОК. Взаимная простота ]
[ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 7,8,9,10

Автор: Фомин Д.

Хозяйка испекла для гостей пирог. За столом может оказаться либо p человек, либо q (p и q взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну?

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .