ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Для каждого из чисел 1, 19, 199, 1999 и т. д. изготовили одну отдельную карточку и записали на ней это число. а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки? б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки? Решение |
Страница: << 1 2 [Всего задач: 10]
Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?
В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?
Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами четное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?
а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки? б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки?
Страница: << 1 2 [Всего задач: 10] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|