ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Квадратный трехчлен" (Болибрух А., Уроев В.,Шабунин М.) Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны три различных ненулевых числа. Петя и Вася составляют квадратные уравнения, подставляя эти числа в качестве коэффициентов, но каждый раз в новом порядке. Если у уравнения есть хотя бы один корень, то Петя получает фантик, а если ни одного, то фантик достаётся Васе. Первые три фантика достались Пете, а следующие два — Васе. Можно ли определить, кому достанется последний, шестой фантик? Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 263]
Найти все положительные решения системы уравнений
Про квадратный трехчлен f(x) = ax² – ax + 1 известно, что | f(x)| ≤ 1 при 0 ≤ x ≤ 1. Найдите наибольшее возможное значение а.
При каком натуральном K величина достигает максимального значения?
Даны квадратные трёхчлены f и g с одинаковыми старшими коэффициентами. Известно, что сумма четырёх корней этих трёхчленов
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 263] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|