Страница:
<< 85 86 87 88
89 90 91 >> [Всего задач: 1026]
Противоположные стороны выпуклого шестиугольника попарно
равны и параллельны. Докажите, что он имеет центр симметрии.
На отрезке
AE по одну сторону от него построены равносторонние
треугольники
ABC и
CDE;
M и
P - середины отрезков
AD и
BE.
Докажите, что треугольник
CPM равносторонний.
|
|
Сложность: 4- Классы: 8,9,10
|
Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$.
Докажите, что отрезок $LJ$ перпендикулярен $AD$.
|
|
Сложность: 4- Классы: 9,10,11
|
На сферическом Солнце обнаружено конечное число круглых пятен, каждое из
которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются
замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой.
Доказать, что на Солнце найдутся две диаметрально противоположные точки, не
покрытые пятнами.
|
|
Сложность: 4- Классы: 7,8,9
|
Найдите сумму величин углов
MAN,
MBN,
MCN,
MDN и
MEN, нарисованных на клетчатой бумаге так, как показано на рисунке 1.
 |
Рис. 1 |
Страница:
<< 85 86 87 88
89 90 91 >> [Всего задач: 1026]