ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
а) На 44 деревьях, расположенных по окружности, сидели 44 весёлых чижа (на каждом дереве по чижу). Время от времени два чижа одновременно перелетают на соседние деревья в противоположных направлениях (один – по часовой стрелке, другой – против). Докажите, что чижи никогда не соберутся на одном дереве. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 288]
Двадцать пять монет раскладывают по кучкам следующим образом. Сначала их произвольно разбивают на две группы. Затем любую из имеющихся групп снова разбивают на две группы, и так далее до тех пор, пока каждая группа не будет состоять из одной монеты. При каждом разбиении какой-либо группы на две записывается произведение количеств монет в двух получившихся группах. Чему может быть равна сумма всех записанных чисел?
Дан отрезок [0, 1]. За ход разрешается разбить любой из имеющихся отрезков точкой на два новых отрезка и записать на доску произведение длин этих двух новых отрезков.
а) На 44 деревьях, расположенных по окружности, сидели 44 весёлых чижа (на каждом дереве по чижу). Время от времени два чижа одновременно перелетают на соседние деревья в противоположных направлениях (один – по часовой стрелке, другой – против). Докажите, что чижи никогда не соберутся на одном дереве.
В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 288] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|