ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) На 44 деревьях, расположенных по окружности, сидели 44 весёлых чижа (на каждом дереве по чижу). Время от времени два чижа одновременно перелетают на соседние деревья в противоположных направлениях (один – по часовой стрелке, другой – против). Докажите, что чижи никогда не соберутся на одном дереве.
б) А если чижей и деревьев n?

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 288]      



Задача 64544

Темы:   [ Инварианты ]
[ Классическая комбинаторика (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4-

Двадцать пять монет раскладывают по кучкам следующим образом. Сначала их произвольно разбивают на две группы. Затем любую из имеющихся групп снова разбивают на две группы, и так далее до тех пор, пока каждая группа не будет состоять из одной монеты. При каждом разбиении какой-либо группы на две записывается произведение количеств монет в двух получившихся группах. Чему может быть равна сумма всех записанных чисел?

Прислать комментарий     Решение

Задача 67047

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4-
Классы: 9,10,11

Автор: Лукин М.

Дан отрезок  [0, 1].  За ход разрешается разбить любой из имеющихся отрезков точкой на два новых отрезка и записать на доску произведение длин этих двух новых отрезков.
Докажите, что ни в какой момент сумма чисел на доске не превысит ½.

Прислать комментарий     Решение

Задача 73546

Темы:   [ Инварианты ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9

а) На 44 деревьях, расположенных по окружности, сидели 44 весёлых чижа (на каждом дереве по чижу). Время от времени два чижа одновременно перелетают на соседние деревья в противоположных направлениях (один – по часовой стрелке, другой – против). Докажите, что чижи никогда не соберутся на одном дереве.
б) А если чижей и деревьев n?

Прислать комментарий     Решение

Задача 88308

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 7,8,9

В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

Прислать комментарий     Решение

Задача 97848

Темы:   [ Инварианты ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9

Автор: Ильичев В.

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 288]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .