ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше ⅖ общего числа участников этого похода, во втором – тоже меньше ⅖. Докажите, что в этом классе мальчики составляют меньше 4/7 общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе.

б) Пусть в k-м походе, где  1 ≤ k ≤ n,  мальчики составляли αk-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из n походов)?

   Решение

Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 590]      



Задача 61413

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства ]
[ Неравенство Иенсена ]
Сложность: 5-
Классы: 10,11

Докажите, что если  α < β  и  αβ ≠ 0,   то  Sα(x) ≤ Sβ(x).
Определение средних степенных Sα(x) можно посмотреть в справочнике.

Прислать комментарий     Решение

Задача 64730

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 10,11

Докажите, что для любого натурального n найдётся натуральное число, десятичная запись квадрата которого начинается n единицами, а заканчивается какой-то комбинацией из n единиц и двоек.

Прислать комментарий     Решение

Задача 73701

Темы:   [ Задачи на проценты и отношения ]
[ Линейные неравенства и системы неравенств ]
Сложность: 5-
Классы: 7,8,9,10

а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше ⅖ общего числа участников этого похода, во втором – тоже меньше ⅖. Докажите, что в этом классе мальчики составляют меньше 4/7 общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе.

б) Пусть в k-м походе, где  1 ≤ k ≤ n,  мальчики составляли αk-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из n походов)?

Прислать комментарий     Решение

Задача 79520

Темы:   [ Тригонометрические замены ]
[ Алгебраические неравенства (прочее) ]
[ Тригонометрические неравенства ]
Сложность: 5-
Классы: 10,11

а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа x и y, что  0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

Прислать комментарий     Решение

Задача 109941

Темы:   [ Последовательности (прочее) ]
[ Системы алгебраических неравенств ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 9,10,11

Автор: Храмцов Д.

В последовательности натуральных чисел {an},  n = 1, 2, ...,  каждое натуральное число встречается хотя бы один раз, и для любых различных n и m выполнено неравенство     Докажите, что тогда  |an – n| < 2000000  для всех натуральных n.

Прислать комментарий     Решение

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .