ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ионин Ю.И.

Квадратный трёхчлен  f(x) = ax² + bx + c  таков, что уравнение  f(x) = x  не имеет вещественных корней.
Докажите, что уравнение  f(f(x)) = x  также не имеет вещественных корней.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



Задача 78077

Темы:   [ Правильные многоугольники ]
[ Шестиугольники ]
[ Итерации ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Последовательности и ряды функций ]
Сложность: 3
Классы: 8,9

Точки A1, A2, A3, A4, A5, A6 делят окружность радиуса 1 на шесть равных частей. Из A1 провёден луч l1 в направлении A2, из A2 – луч l2 в направлении A3, ..., из A6 – луч l6 в направлении A1. Из точки B1, взятой на луче l1, опускается перпендикуляр на луч l6, из основания этого перпендикуляра опускается перпендикуляр на l5 и т. д. Основание шестого перпендикуляра совпало с B1. Найти отрезок B1A1.

Прислать комментарий     Решение

Задача 98063

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
Сложность: 3
Классы: 6,7,8

Автор: Фомин С.В.

Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.

Прислать комментарий     Решение

Задача 60390

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Итерации ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для любого натурального a найдётся такое натуральное n, что все числа  n + 1,  nn + 1,  nnn + 1,  ...  делятся на a.

Прислать комментарий     Решение

Задача 61343

Темы:   [ Задачи на проценты и отношения ]
[ Системы линейных уравнений ]
[ Итерации ]
Сложность: 3+
Классы: 7,8,9,10

За круглым столом сидят 4 гнома. Перед каждым стоит кружка с молоком. Один из гномов переливает ¼ своего молока соседу справа. Затем сосед справа делает то же самое. Затем то же самое делает следующий сосед справа и наконец четвёртый гном ¼ оказавшегося у него молока наливает первому. Во всех кружках вместе молока 2 л. Сколько молока было первоначально в кружках, если
  а) в конце у всех гномов молока оказалось поровну?
  б) в конце у всех гномов оказалось молока столько, сколько было в начале?

Прислать комментарий     Решение

Задача 73749

Темы:   [ Исследование квадратного трехчлена ]
[ Разложение на множители ]
[ Итерации ]
Сложность: 3+
Классы: 8,9,10

Автор: Ионин Ю.И.

Квадратный трёхчлен  f(x) = ax² + bx + c  таков, что уравнение  f(x) = x  не имеет вещественных корней.
Докажите, что уравнение  f(f(x)) = x  также не имеет вещественных корней.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .