ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Тоом А.Л.

На бесконечном клетчатом листе белой бумаги n клеток закрашены в чёрный цвет. В моменты времени t = 1, 2, 3,... происходит одновременное перекрашивание всех клеток листа по следующему правилу: каждая клетка k приобретает тот цвет, который имело в предыдущий момент большинство из трёх клеток: самой клетки k и её соседей справа и сверху (если две или три из этих клеток были белыми, то k становится белой, если две или три из них были чёрными,— то чёрной).

а) Докажите, что через конечное время на листе не останется ни одной чёрной клетки.

б) Докажите, что чёрные клетки исчезнут не позже, чем в момент времени t = n.

   Решение

Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 411]      



Задача 116766

Темы:   [ Многочлены (прочее) ]
[ Процессы и операции ]
[ Ориентированные графы ]
[ Подсчет двумя способами ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 10,11

Изначально на доске были написаны одночленs  1, x, x², ..., xn.  Договорившись заранее, k мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через m минут на доске были написаны, среди прочих, многочлены  S1 = 1 + x,  S2 = 1 + x + x²,  S3 = 1 + x + x² + x3,  ...,  Sn = 1 + x + x² + ... + xn.  Докажите, что  

Прислать комментарий     Решение

Задача 66317

Темы:   [ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
[ Вспомогательные подобные треугольники ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Индукция в геометрии ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.

Прислать комментарий     Решение

Задача 105083

Темы:   [ Выигрышные и проигрышные позиции ]
[ Четность и нечетность ]
[ Обход графов ]
[ Процессы и операции ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

Система укреплений состоит из блиндажей. Некоторые из блиндажей соединены траншеями, причём из каждого блиндажа можно перебежать в какой-нибудь другой. В одном из блиндажей спрятался пехотинец. Пушка может одним выстрелом накрыть любой блиндаж. В каждом промежутке между выстрелами пехотинец обязательно перебегает по одной из траншей в соседний блиндаж (даже если по соседнему блиндажу только что стреляла пушка, пехотинец может туда перебежать). Назовём систему надёжной, если у пушки нет гарантированной стратегии поражения пехотинца (то есть такой последовательности выстрелов, благодаря которой пушка поразит пехотинца независимо от его начального местонахождения и последующих передвижений).

  а) Докажите, что система укреплений, изображённая на рисунке, надёжна.
  б) Найдите все надёжные системы укреплений, которые перестают быть надёжными после разрушения любой из траншей.

Прислать комментарий     Решение

Задача 110771

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Индукция в геометрии ]
Сложность: 5
Классы: 8,9,10,11

Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Прислать комментарий     Решение

Задача 73750

Темы:   [ Процессы и операции ]
[ Раскраски ]
[ Итерации ]
[ Геометрия на клетчатой бумаге ]
[ Индукция в геометрии ]
Сложность: 7
Классы: 9,10,11

Автор: Тоом А.Л.

На бесконечном клетчатом листе белой бумаги n клеток закрашены в чёрный цвет. В моменты времени t = 1, 2, 3,... происходит одновременное перекрашивание всех клеток листа по следующему правилу: каждая клетка k приобретает тот цвет, который имело в предыдущий момент большинство из трёх клеток: самой клетки k и её соседей справа и сверху (если две или три из этих клеток были белыми, то k становится белой, если две или три из них были чёрными,— то чёрной).

а) Докажите, что через конечное время на листе не останется ни одной чёрной клетки.

б) Докажите, что чёрные клетки исчезнут не позже, чем в момент времени t = n.
Прислать комментарий     Решение


Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .