Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 590]
|
|
Сложность: 4 Классы: 9,10,11
|
При каких натуральных n ≥ 2 неравенство
выполняется для любых действительных чисел x1, x2, ..., xn, если
а) p = 1;
б) p = 4/3;
в) p = 6/5?
|
|
Сложность: 4 Классы: 10,11
|
Что больше: 300! или 100300?
Дана невозрастающая последовательность чисел
1/2k = a1 ≥ a2 ≥ ... ≥ an ≥ ... > 0, a1 + a2 + ... + an + ... = 1.
Доказать, что найдутся k чисел, из которых самое маленькое больше половины самого большого.
|
|
Сложность: 4 Классы: 10,11
|
Даны сто чисел x1, x2,..., x100, сумма которых равна 1. При этом абсолютные величины разностей xk+1 – xk меньше 1/50 каждая.
Доказать, что из них можно выбрать 50 чисел так, чтобы сумма выбранных отличалась от половины не больше, чем на одну сотую.
Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать,
что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно.
Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 590]